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The Hollomon n – value, and the strain to necking in steel  
General 
It is well documented that the true strain to necking, εn, in a uniaxial tensile test provides a 
valuable measure of the stretch formability of a material (1) – the stretch formability 
increasing with increasing εn. 
 
Quite frequently experimentally recorded σ-ε curves are described by the Hollomon – 
equation (2) 
 
 nKσ ε= ⋅      (1) 
 
where σ is the true stress, K a material constant, ε is the true strain and n is the strain 
hardening index or the n-value, and since necking commences at maximum load, it holds that 
 
 n nε =      (2) 
 
Hence, if the σ-ε curve of a material can be represented by eqn(1) then it also holds that n is a 
measure of the stretch formability of the material. In fact, since n is readily determined from 
the slope of a plot of log σ versus log ε, the latter parameter has frequently been used for this 
purpose. Unfortunately, eqn(1) very seldom gives an accurate description of experimental σ – 
ε data. Instead, it seems that n is strain dependent and that the constant value of n that is often 
reported is merely an “average” taken over some specific strain interval on a log σ-log ε plot. 
A pronounced non-linearity of the experimentally-determined log σ-log ε relationship for e.g. 
iron and steel has also been reported (3). This so-called “double-n” behaviour is usually 
represented by two straight lines intersecting at some strain ε1 and such that 
 

1
1

nKσ ε= ⋅   1luε ε ε≤ ≤    (3a) 
 

2
2

nKσ ε= ⋅   1 nε ε ε≤ ≤    (3b) 
 
where K1, K2, n1 and n2 are constants and εlu is the Lüders strain. In this case it is similarly 
reasonable to assume that the two n-values are averages taken over the strain intervals (εlu-ε1) 
and (ε1-εn). It seems therefore that the strain hardening index as defined in the Hollomon 
relationship is an uncertain parameter and hence that its application as a measure of e.g.  the 
stretch formability of steel sheet must in many instances be questioned. 
 
It is the objective of this of this paper to discuss the physical significance of n and to show 
that the true strain to necking, εn, as determined by the present dislocation model for bcc 
metals represents a more reliable measure of e.g. the stretch formability of steel. It also leads 
to increased possibilities to identify individual effects of  the parameters defining the strain to 
necking and, as a result of this, to optimise the properties for stretch forming.  
 
It is the objective of this paper to present and discuss some of these possibilities. 
 
Application of the Bergström bcc-model to the strain hardening index n. 
According to Bergström(4) the stress – strain behaviour of bcc – metals may be written 
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where σi0 is the friction stress, α is a dislocation strengthening factor, G is the shear modulus, 
b is the nominal value of the Burgers vector, m is the Taylor factor, Ω is the dislocation 
remobilisation factor, s0 is the mean free path of dislocation motion and ρ0 is the “grown-in” 
dislocation density. 
 
By introducing the parameter U0 for dislocation generation  
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     (5) 

 
eqn(4) may be written 
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  (6) 

  
In order to obtain an analytical expression for n in terms of the parameters in eqn(6) we may 
proceed in the following way. From eqn(1) we obtain after differentiation 
 

 d n
d
σ σ
ε ε

⋅
=      (7) 

 
By differentiation of eqn(6) with respect to strain and comparison with eqn(7), we obtain the 
following expression for n 
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where  
 

 0
0( ) (1 )U e eε ερ ε ρ−Ω⋅ −Ω⋅= ⋅ − + ⋅

Ω
   (9a) 

  
 ( ) ( )d G bσ ε α ρ ε= ⋅ ⋅ ⋅     (9b) 
 

 0
max

Uρ =
Ω

     (9c) 

 
Here ρ0/ρmax may usually be neglected for well-annealed specimens. 
 
It is clear from eqn(8) that n varies monotonically with strain and in order to further elucidate 
this behaviour we will make some comparisons with experimental data.  
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Experiments 
In the experiments a H2-treated steel is used in order to avoid a Lüders strain. Hence a 
maximum strain interval can be used for the analysis. The specimens are tensile tested at 
25C,400C and 620C at a strain rate of 10-3 s-1. 
 
Fitting procedure 
A special Matlab subroutine, based on the Matlab Curve Fitting Toolbox, is designed for the 
purpose of this study. and eqn(4) is fitted to the experimental true stress – true strain curves. 
In the fitting procedure the following parameters are kept constant, see Table 1: 
 

α 1 1 1 
G, MPa 78500 (25C) 69700 (400C) 60800 (620C) 

b, m 2.5·10-10 2.5·10-10 2.5·10-10 
m 2 2 2 

Table 1. Constant parameter values 
 
The parameters Ω, σi0, ρ0 and s0 are allowed to vary freely, within realistic limits, until the 
best fit is obtained. The results from the fitting of eqn(4) to the stress-strain curve recorded at 
25C is shown in Fig. 1. In the upper left graph the fitted stress-train curve is shown – this 
curve (red) is covering the experimental data. The red cross indicates the calculated strain to 
necking and corresponding flow stress. To the upper right we see the corresponding 
theoretical ρ-ε curve. To the lower left the parameter values recorded in the fit are shown 
while the figure to the lower right gives the errors in the fit. We see that the average error e1 is 
smaller than 0.3 MPa while the running average error e2 is approximately equal to 0.003 MPa. 
For a more detailed presentation of  the fitting of eqn(6) to experimental data, see Paper 1 on 
this homepage.  
 
The parameter values obtained in fitting eqn(4) to the true stress-strain curves recorded at the 
temperatures 25C , 400C and 620C are presented in Table 2. 
 

T C 25C 400C 620C 
Ω 4.59 7.92 12.3 

σi0, (MPa) 27.87 24.81 30.85 
ρ0  (m-2) 9.6·1011  8.7·1011 9.5·1011 

s0, m 4.35·10-6 7.08·10-6 21·10-6 

G, MPa 78500 69700 60800 
Table 2. Parameter values obtained in the fitting procedure 
 
The strain dependence of n 
It is generally assumed in fitting the Hollomon relationship, see eqn(1), to experimental 
stress-strain data, that the parameters K and n are strain independent. The fact that a “double-
n”, see eqn(3), and sometimes even a “triple-n” behaviour is observed indicates that this 
might be a strong simplification. We will now use the present theory, see eqn(8), to 
demonstrate the actual strain dependence of n for a H2-treated steel strained at the three 
different temperatures indicated above. In doing this we will use the parameter values 
obtained in fitting of eqn(4) to the corresponding stress-strain curves, see Table 2. The result 
is presented in Fig 2. It can be seen that n starts at a low value at small strains and increases to 
a maximum at ca 2-3% of strain. Thereafter n decreases with increasing strain. It is also 
evident that n at all strains decreases with increasing temperature which mainly is an effect of 
an increasing mean free path s and an increasing Ω-value. 
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Fig.1. Results from fitting eqn(6) to a room temperature stress-strain curve, see text.  
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Fig. 2. The n-value in the Hollomon equation as a function of  strain for a H2-treated steel 
tested at 25C, 400C and 620C  and at a strain-rate of 10-3 s-1 
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Now, in order to elucidate this further we will plot log σ versus log ε  for the three 
temperatures and investigate weather the plots are linear or not. It is quite obvious, and in 
accordance with the n-ε plots in Fig.2 that, in fact, a triple-n behaviour is prevailing for the 
three curves, see Fig.3. This is demonstrated in more detail in Fig.4 where the log σ-log ε plot 
of the stress-strain curve recorded at 25C is approximated by three straight lines. The 
equations for the three lines are presented in the figure. (The points represent the experimental 
values). 
 
In the present case we are dealing with a H2-treated steel where the Lüders band effect has 
been eliminated. Conventional steels, however, exhibit Lüders strains of several percent and if  
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Fig.3. Log σ-log ε plots for a H2-treated steel strained at 25C, 400C and 620C and at a 
strain-rate of 10-3 s-1. 
 
we exclude the first three to four points of the curves in Fig.3 we see that a double-n 
behaviour is exhibited which also is typical for conventional steels, see also Fig.4. 
 
From the above results we may therefore conclude that the strain hardening index n in iron 
and steel varies with strain and that an accurate description of experimental σ-ε curves 
normally cannot be obtained by the simple slightly modified Eqns (2) and (3). These 
equations may, however, be used as approximations. The basic problem with equations like 
the Hollomon ones is, however, that the parameters involved are lacking a physical meaning.  
 
A consequence of this is that these equations are less suitable for a physical analysis of the 
mechanical properties of metals as well as for a physically based development of their 
mechanical properties. However, in spite of these problems the n-value is commonly used for 
judging the mechanical properties of metals and alloys. The basic reason for this is that the n-
vales have a long history and that they are well known in the metal as well as in the car 
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industries. Let us, however, hope that the n-values soon will be replaced by physically more 
realistic measures. Since the n-value in the Hollomon equation lacks a physical meaning and 
is strain dependent, it also holds that the n-value as a measure of stretch formability is a 
dubious one. 
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Fig.4. A log σ – log ε plot of the H2-treated steel strained at 25C and at a strain rate of        
10-3 s-1. The triple-n behaviour is illustrated by linear approximations in black, red and 
yellow. From the figure we can see that the slope at low strains is equal to approximately  
0.34, at intermediate strains ~ 0.38 and at high strains  ~0.3. 
 
The true strain to necking, εn 
An alternative and better way to go is therefore to use the true strain to necking (5). We will 
therefore demonstrate the advantages with such a procedure by proceeding from eqn(6) and 
calculate the true strain to necking and to study, on a physical basis, the effects of  the rate of 
dislocation generation, dislocation re-mobilisation, friction stress, etc. on the true strain to 
necking. 
 
Since necking commences at maximum load, the criterion for plastic instability at uniaxial 
straining may be written 
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 ( ) ( )d
d
σ ε σ ε
ε

=     (10) 

 
Now, proceeding from eqns.(6) and (10) and assuming that the “grown-in” dislocation density 
is small and may be neglected, the following expression for the strain to necking may be 
derived 
 

2 20 0 0

max max max

1 1 1 1 1 1 1 / 2ln ( ) ( )
1 / 2 2 1 / 2 1 / 2 4 1 / 2 1 / 2

i i i
n

d d d

σ σ σ
ε

σ σ σ
 Ω

= − ⋅ − ⋅ + ⋅ ⋅ ⋅ ⋅ + 
Ω +Ω +Ω +Ω +Ω +Ω  

 

(11) 
 
where 

1
20

maxd
UG bσ α  = ⋅ ⋅ ⋅ Ω 

    (12) 

 
Unfortunately, this expression is comparatively complicated, but it may be considerably 
simplified for the low carbon sheet steels normally used for stretch forming. 
 
For the latter type of steel the friction stress, σi0, is usually smaller than 100 MPa and the 
value of σdmax larger than 300 MPa. The value of Ω at the ambient temperature for this type of 
steel is approximately 5. It thus holds that the quadratic terms in eqn(11) are much smaller 
than the other terms and that the approximation ln(1+x) ~ x  can be used and eqn(11) may be 
rewritten in the following (approximate) form 
 

 0

max

1 1 / 2ln 1
2 1 / 2

i
n

d

σε
σ

Ω Ω ≈ ⋅ + − ⋅ ⋅ Ω Ω +Ω 
  (13) 

  
The friction stress, σi0, has the following components. 
 
 *

0i g p sσ σ σ σ σ= + + +     (14) 
 
where σg stands for grain size hardening, σp for precipitation hardening, σs for solution 
hardening and σ* for thermal hardening. 
 
It is obvious, therefore, from eqn(13) that a large strain to necking, that is a good stretch 
formability, is obtained by minimising the four friction stress hardening components in 
eqn(14) and maximising, σd max, that is the rate of deformation hardening.  
 
Eqn(13) also indicates that a decrease in Ω, i.e. a decrease in the rate of dislocation 
remobilisation, results in an increased strain to necking. Since there is a strong effect of Ω on  
εn, it would be of great interest to find measures to make the Ω-value smaller by e.g. 
processing, alloying or other ways. In the steel studied in the present investigation Ω is equal 
to 4.6 and the strain to necking is calculated to be 0.245. If it would be possible, by various 
types of treatments, to make Ω attain half that value, i.e 2.3, while the other parameters were 
kept constant, then, according to eqn(13), εn~0.32. This would imply a dramatic improvement 
of the ductility and the stretch formability of this type of steel. 
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Now, the strain to necking may also be calculated directly from eqn(10) by using eqn(6) and 
the parameter values obtained in the fitting procedure. This can be seen in Fig.1 where the red 
cross represents the true strain to necking and the corresponding flow stress. Proceeding from 
such a procedure it is also easily done to investigate the influence of variations in the different 
parameters in eqn(6) on εn.  An example of such an analysis is presented in Fig.5 where the 
effect of variations in the friction stress, σio, is studied. In this figure the parameter values 
obtained in the fit of  the stress-strain curve recorded at 25C are used as base values. It can be 
seen in the figure that a decrease in σi0 from 150 MPa to10 MPa results in an increase of  the 
strain to necking from 20% to 25%.  
 

 
 
Fig.5. Variations in εn as a function of σi0 for a H2-treated steels tested at 25C 
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Discussion  
In the present study we have used Bergström original dislocation theory to study the n-value 
in the Hollomon equation. It is demonstrated that n is not a constant, as proposed in the 
empirical Hollomon equation, but in fact strain dependent. This strain dependence also 
explains the “double-n” and “triple-n” behaviours often reported in the literature. 
 
It is also quite clear from the reasoning above that the n-value is an unreliable parameter for 
judging the mechanical properties of steel and other metals and alloys. It is certainly better to 
use the strain to necking. We have therefore, as an example, used Bergströms model to derive 
an expression relating the strain to necking to physical parameters as friction stress, 
deformation hardening (mean free path of dislocation motion) and dislocation remobilisation 
as defined in this theory. Proceeding from such an analysis it is possible to evaluate the 
individual influence of the various material parameters on the strain to necking and thus 
stretch formability.   
 
We have also shown that larger εn-values for steel may be obtained by decreasing the friction 
stress and by increasing the rate of work hardening, i.e. decreasing the mean free path of 
dislocation motion, s. Another effective way of obtaining much larger strains to necking and 
thus a better stretch formability would be to find methods to reduce the value of the 
dislocation remobilisation constant, Ω. Let us present a short discussion related to that 
possibility.  
 
The ability for a dislocation to remobilise depends on several factors besides melting 
temperature, testing temperature and strain rate. It is well known that the stacking fault 
energy, γ, plays an important role. A decrease in γ implies that the width of the stacking fault 
increases and hence that the probability for dislocation cross slip diminishes and consequently 
that the probability for remobilisation is reduced. Another factor influencing the probability 
for cross slip is the number of available slip systems. The bcc structure exhibits a large 
number of slip systems and would therefore show higher Ω-values than the fcc- and hcp-
structures. This is in good agreement with experimental observations. While the Ω-value for 
ferrite at room temperature and a moderate strain rate is approximately equal to 5 the 
corresponding value for an austenitic steel is approximately 0 and that for cupper 
approximately 2. It is reasonable to assume that also texture may have an impact on the Ω-
value. Also the locking of immobilised dislocations by solute atoms and other configurations 
of atoms and vacancies may reduce the probability for remobilisation. If we could find a 
method to reduce the Ω-value for alpha iron to a value close to zero we would have the 
possibility to reach a εn-value close to 0.5 if we have σi0~0 MPa. We would then have reached 
the condition for Taylors original theory  for work hardening with σ~ε1/2 and a superb 
ductility and stretch formability. 
 
Conclusions 
It is concluded that to improve stretch formability in steel, that is to increase εn, we may 
proceed in the following ways: 
 

- decrease the grain size hardening component, σg, by increasing the grain diameter. 
- decrease the precipitate hardening component, σp, by reducing the content of 

precipitates 
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- decrease the solution hardening component by reducing the amount of atoms in 
solution 

- carry out the forming operations at low enough deformation rates and moderate 
temperatures. It should be remembered that dynamic strain ageing effects may occur at 
as low temperatures as 150 – 200C and dramatically change the behaviour. 

- try to find methods by which the dislocation remobilisation constant Ω may attain 
values much smaller than 5 for alpha iron. 
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